302 research outputs found

    Constraining star cluster disruption mechanisms

    Full text link
    Star clusters are found in all sorts of environments and their formation and evolution is inextricably linked to the star formation process. Their eventual destruction can result from a number of factors at different times, but the process can be investigated as a whole through the study of the cluster age distribution. Observations of populous cluster samples reveal a distribution following a power law of index approximately -1. In this work we use M33 as a test case to examine the age distribution of an archetypal cluster population and show that it is in fact the evolving shape of the mass detection limit that defines this trend. That is to say, any magnitude-limited sample will appear to follow a dN/dt=1/t, while cutting the sample according to mass gives rise to a composite structure, perhaps implying a dependence of the cluster disruption process on mass. In the context of this framework, we examine different models of cluster disruption from both theoretical and observational standpoints.Comment: To appear in the proceedings of IAU Symposium 266: "Star Clusters: Basic Galactic Building Blocks Throughout Time And Space", eds. R. de Grijs and J. Lepin

    A detailed study of the enigmatic cluster M82F

    Full text link
    We present a detailed study of the stellar cluster M82F, using multi-band high resolution HST imaging and deep ground based optical slit and integral field spectroscopy. Using the imaging we create colour maps of the cluster and surrounding region in order to search for substructure. We find a large amount of substructure, which we interpret as the result of differential extinction across the projected face of the cluster. With this interpretation, we are able to construct a spatially resolved extinction map across the cluster which is used to derive the intrinsic flux distribution. Fitting cluster profiles (King and EFF) to the intrinsic images we find that the cluster is 15-30% larger than previous estimates, and that no strong evidence of mass segregation in this cluster exists. Using the optical spectra, we find that the age of M82F is 60-80 Myr and from its velocity conclude that the cluster is not physically associated with a large HII region that it is projected upon, both in agreement with previous studies. The reconstructed integral field maps show that that majority of the line emission comes from a nearby HII region. The spatial dependence of the line widths (implying the presence of multiple components)measured corresponds to the extinction map derived from photometry, indicating that the gas/dust clouds responsible for the extinction are also partially ionised. Even with the wealth of observations presented here, we do not find a conclusive solution to the problem of the high light-to-mass ratio previously found for this cluster and its possible top-heavy stellar IMF.Comment: 12 pages, 7 figures, accepted MNRA

    Low-frequency wide band-gap elastic/acoustic meta-materials using the K-damping concept

    Full text link
    The terms "acoustic/elastic meta-materials" describe a class of periodic structures with unit cells exhibiting local resonance. This localized resonant structure has been shown to result in negative effective stiffness and/or mass at frequency ranges close to these local resonances. As a result, these structures present unusual wave propagation properties at wavelengths well below the regime corresponding to band-gap generation based on spatial periodicity, (i.e. "Bragg scattering"). Therefore, acoustic/elastic meta-materials can lead to applications, especially suitable in the low-frequency range. However, low frequency range applications of such meta-materials require very heavy internal moving masses, as well as additional constraints at the amplitudes of the internally oscillating locally resonating structures, which may prohibit their practical implementation. In order to resolve this disadvantage, the K-Damping concept will be analyzed. According to this concept, the acoustic/elastic meta-materials are designed to include negative stiffness elements instead or in addition to the internally resonating added masses. This concept removes the need for the heavy locally added heavy masses, while it simultaneously exploits the negative stiffness damping phenomenon. Application of both Bloch's theory and the classical modal analysis at the one-dimensional mass-in-mass lattice is analyzed and corresponding dispersion relations are derived. The results indicate significant advantages over the conventional mass-in-a mass lattice, such as broader band-gaps and increased damping ratio and reveal significant potential in the proposed solution. Preliminary feasibility analysis for seismic meta-structures and low frequency acoustic isolation-damping confirm the strong potential and applicability of this concept.Comment: Keywords: Acoustic meta-materials, elastic meta-materials, low-frequency vibration absorption, seismic meta-structures, noise absorptio

    The Snapshot Hubble U-Band Cluster Survey (SHUCS) II. Star Cluster Population of NGC 2997

    Get PDF
    We study the star cluster population of NGC 2997, a giant spiral galaxy located at 9.5 Mpc and targeted by the Snapshot Hubble U-band Cluster Survey (SHUCS). Combining our U-band imaging from SHUCS with archival BVI imaging from HST, we select a high confidence sample of clusters in the circumnuclear ring and disk through a combination of automatic detection procedures and visual inspection. The cluster luminosity functions in all four filters can be approximated by power-laws with indices of −1.7-1.7 to −2.3-2.3. Some deviations from pure power-law shape are observed, hinting at the presence of a high-mass truncation in the cluster mass function. However, upon inspection of the cluster mass function, we find it is consistent with a pure power-law of index −2.2±0.2-2.2\pm0.2 despite a slight bend at ∼\sim2.5×1042.5\times10^{4} M⊙_{\odot}. No statistically significant truncation is observed. From the cluster age distributions, we find a low rate of disruption (ζ∼−0.1\zeta\sim-0.1) in both the disk and circumnuclear ring. Finally, we estimate the cluster formation efficiency (Γ\Gamma) over the last 100 Myr in each region, finding 7±27\pm2% for the disk, 12±412\pm4% for the circumnuclear ring, and 10±310\pm3% for the entire UBVI footprint. This study highlights the need for wide-field UBVI coverage of galaxies to study cluster populations in detail, though a small sample of clusters can provide significant insight into the characteristics of the population.Comment: 31 pages, 9 figures, accepted to the A

    The Young Cluster Population of M82 Region B

    Full text link
    We present observations obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope of the "fossil" starburst region B in the nearby starburst galaxy M82. By comparing UBVI photometry with models, we derive ages and extinctions for 35 U-band selected star clusters. We find that the peak epoch of cluster formation occurred ~ 150 Myr ago, in contrast to earlier work that found a peak formation age of 1.1 Gyr. The difference is most likely due to our inclusion of U-band data, which are essential for accurate age determinations of young cluster populations. We further show that the previously reported turnover in the cluster luminosity function is probably due to the neglect of the effect of extended sources on the detection limit. The much younger cluster ages we derive clarifies the evolution of the M82 starburst. The M82-B age distribution now overlaps with the ages of: the nuclear starburst; clusters formed on the opposite side of the disk; and the last encounter with M81, some 220 Myr ago.Comment: 11 pages, 4 figures, accepted for publication in ApJ Letter

    A spectroscopic census of the M82 stellar cluster population

    Full text link
    We present a spectroscopic study of the stellar cluster population of M82, the archetype starburst galaxy, based primarily on new Gemini-North multi-object spectroscopy of 49 star clusters. These observations constitute the largest to date spectroscopic dataset of extragalactic young clusters, giving virtually continuous coverage across the galaxy; we use these data to deduce information about the clusters as well as the M82 post-starburst disk and nuclear starburst environments. Spectroscopic age-dating places clusters in the nucleus and disk between (7, 15) and (30, 270) Myr, with distribution peaks at ~10 and ~140 Myr respectively. We find cluster radial velocities in the range (-160, 220) km/s (wrt the galaxy centre) and line of sight Na I D interstellar absorption line velocities in (-75, 200) km/s, in many cases entirely decoupled from the clusters. As the disk cluster radial velocities lie on the flat part of the galaxy rotation curve, we conclude that they comprise a regularly orbiting system. Our observations suggest that the largest part of the population was created as a result of the close encounter with M81 ~220 Myr ago. Clusters in the nucleus are found in solid body rotation on the bar. The possible detection of WR features in their spectra indicates that cluster formation continues in the central starburst zone. We also report the potential discovery of two old populous clusters in the halo of M82, aged >8 Gyr. Using these measurements and simple dynamical considerations, we derive a toy model for the invisible physical structure of the galaxy, and confirm the existence of two dominant spiral arms.Comment: Accepted for publication in the Astrophysical Journa

    Gemini Spectroscopy and HST Imaging of the Stellar Cluster Population in Region B of M82

    Full text link
    We present new spectroscopic observations of the stellar cluster population of region B in the prototype starburst galaxy M82 obtained with the Gillett Gemini-North 8.1-metre telescope. By coupling the spectroscopy with UBVI photometry acquired with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), we derive ages, extinctions and radial velocities for seven young massive clusters (YMCs) in region B. We find the clusters to have ages between 70 and 200 Myr and velocities in the range 230 to 350 km/s, while extinctions Av vary between ~1-2.5 mag. We also find evidence of differential extinction across the faces of some clusters which hinders the photometric determination of ages and extinctions in these cases. The cluster radial velocities indicate that the clusters are located at different depths within the disk, and are on regular disk orbits. Our results overall contradict the findings of previous studies, where region B was thought to be a bound region populated by intermediate-age clusters that formed in an independent, offset starburst episode that commenced 600 Myr-1 Gyr ago. Our findings instead suggest that region B is optically bright because of low extinction patches, and this allows us to view the cluster population of the inner M82 disk, which probably formed as a result of the last encounter with M81. This study forms part of a series of papers aimed at studying the cluster population of M82 using deep optical spectroscopy and multi-band photometry.Comment: 12 pages, 8 figures; accepted for publication in The Astrophysical Journa
    • …
    corecore